Reg. No.:....

Name :

TRIVANDRUM-11

**ANNAMMOOLA * 100.

Fourth Semester B.Tech. Degree Examination, May 2013 (2008 Scheme)

Branch: Electronics and Communication
08.401 ENGINEERING MATHEMATICS III - PROBABILITY AND
RANDOM PROCESSES (TA)

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all questions of Part – A and one full question each from Module – I, Module – II and Module – III of Part – B.

PART-A

- 1. The probability function of an infinite discrete distribution is given by $P[X = x] = \frac{1}{2x}$ (x = 1, 2, ... ∞) verify that the total probability is 1 and also find the mean and variance of the distribution.
- 2. The probability density function of a random variable X is

$$f(x) = \begin{cases} x & 0 \le x \le 1 \\ 2 - x & 1 \le x < 2 \\ 0 & x \ge 2 \end{cases}$$
 Find the cumulative distribution function of X.

- 3. A normal distribution has mean $\mu=20$ and standard deviation $\sigma=10$. Find P (15 < X < 40).
- The joint probability density function of a two-dimensional random variable (X, Y) is

$$f(x,y) = \begin{cases} \frac{8}{9}xy, & 1 < x < y < z \\ 0, & \text{otherwise} \end{cases}$$

- i) Find the marginal density function of X.
- ii) Find the conditional density function of Y given X = x. Since S

- 5. Show that the linear correlation coefficient lies between −1 and 1.
- 6. Define SSS process and WSS process. What is the difference between them?
- 7. Find the mean and variance of a Poisson process.
- 8. Given that the autocorrelation function for a stationary ergodic process with no periodic components is $R(\tau) = 25 + \frac{4}{1+6\tau^2}$

Find the mean value and variance of the process {X(t)}.

- 9. State Wiener Khinchin Theorem. If the autocorrelation function $R(\tau) = 1$ find the spectral density S(w).
- 10. Let $A = \begin{bmatrix} 0 & 1 \\ 1 & \frac{1}{2} \end{bmatrix}$ be a stochastic matrix. Examine whether it is regular.

 (10×4= 40 Marks)

OT D

PART-B

Module-I

- a) Out of 800 families with 4 children each, how many families would be expected to have
 - i) 2 boys and 2 girls
 - ii) atmost 2 girls
 - iii) children of both sexes.
 - b) If X has a distribution with probability density function $f(x) = e^{-x}$, $0 \le x < \infty$. Use Chebychev's inequality to obtain the lower bound to the probability $P(-1 \le x \le 3)$ and compare it with the actual value.
 - c) The joint probability density function of two random variables X and Y is

given by
$$f(x, y) = kxy e^{-(x^2 + y^2)}$$
, $x > 0$, $y > 0$.

Find the value of k and also prove that X and Y are independent.

(7+7+6=20)

- 12. a) An electrical firm manufactures light bulbs that have a life, before burn out, that is normally distributed with mean equal to 800 hrs and a standard deviation of 40 hrs. Find the probability a bulb burns
 - i) more than 834 hrs
 - ii) less than 900 hrs
 - iii) between 778 and 834 hrs.

b) Find the coefficient of correlation between X and Y from the following data

X: 10 14 18 22 26 30 Y: 18 12 24 16 30 36

c) The joint probability distribution two random variables X and Y is given by

X	0	0=[(f)]	2
0	0.1	0.04	0.06
1	0.2	0.08	0.12
2	0.2	0.08	0.12

Examine whether X and Y are independent?

(7+7+6=20)

Module - II

13. a) Show that the random process

 $X(t) = A \cos \lambda t + B \sin \lambda t$, where A and B are random variables is a wide-sense stationary if

i) E(A) = E(B) = 0

ii) $E(A^2) = E(B^2)$ and

iii) E(AB) = 0.

- b) If $\{X(t)\}$ is a WSS process with autocorrelation function $R(\tau) = Ae^{-\alpha|\tau|}$ determine the second order moment of the random variable X(8) X(5).
- c) On the average, a submarine on patrol sights 6 enemy ships per hour. Assuming that the number of ships sighted in a given length of time is a Poisson variate; find the probability of sighting
 - i) 6 ships in the next half an hour
- ii) at least one ship in the next 15 minutes .

(7+7+6=20)

- 14. a) Show that the random process $X(t) = A \cos (\omega_0 t + \theta)$ is a wide-sense stationary where A and ω_0 are constants and θ is uniformly distributed random variable in $(0, 2\pi)$.
 - b) Two random process $\{X(t)\}$ and $\{Y(t)\}$ are defined by $X(t) = A \cos_{\omega} t + B \sin_{\omega} t$ and $Y(t) = B \cos_{\omega} t A \sin_{\omega} t$. Show that X(t) and Y(t) are jointly wide-sense stationary, if E(A) = E(B) = 0, $E(A^2) = E(B^2)$; E(AB) = 0 and ω is a constant.

c) A radioactive source emits particles at a rate of 5 per minute in accordance with Poisson process. Each particle emitted has a probability 0.6 of being recorded. Find the probability that 10 particles are recorded in 5 minutes period. (7+7+6=20)

Module - III

- 15. a) If $\{X(t)\}$ is a random signal process with E[X(t)] = 0 and $B(\tau) = e^{-2\lambda|\tau|}$. Find the mean and variance of the time average of {X(t)} over (-T, T). Is it mean-ergodic?
 - b) Consider a Markov chain with state space {0, 1, 2} and the transition probability

matrix is
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1-p & 0 & p \\ 0 & 1 & 0 \end{bmatrix}$$

- i) Find P^2 and show that $P^2 = P^4$ ii) Find P^n , n > 1
- c) Find the power spectral density of a WSS process with autocorrelation function $R(\tau) = e^{-\alpha \tau^2}, \alpha > 0$ (7+7+6=20)
- 16. a) Define irreducible Markov chain. Show that the matrix

$$P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 2 & 0 & 1 & 0 \end{bmatrix}$$

is the transition probability matrix of an irreducible Markov chain?

- b) If $\{X(t)\}$ is a WSS process with E [X(t)] = 2 and R $(\tau) = 4 + e^{-|\tau|/10}$ Find the mean and variance of $S = \int_0^t X(t)dt$.
- c) Find the power spectral density of the random binary transmission process whose autocorrelation function is

$$R(\tau) = \begin{cases} 1 - \frac{|\tau|}{T} & \text{for } |\tau| \le T \\ 0 & \text{elsewhere} \end{cases}$$
 (7+7+6=20)